發(fā)布時(shí)間:2025-09-29 11:02:17 瀏覽次數(shù):3
韋達(dá)定理是一個(gè)重要的多元微積分工具,常見(jiàn)的五種公式如下:
1. 標(biāo)量形式:$$\nabla f = \frac{\partial f}{\partial x} i + \frac{\partial f}{\partial y} j + \frac{\partial f}{\partial z} k$$
2. 散度形式:$$\nabla \cdot F = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$
3. 旋度形式:$$\nabla \times F = \begin{vmatrix}i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$
4. 二重積分形式:$$\int_{\partial D} F \cdot \mathrmtbf5pzbr = \iint_D \nabla \times F \cdot \hat{n} \, \mathrmnzpvbdfS$$
5. 線積分形式:$$\int_C F \cdot \mathrm1nn9n13r = \iint_S (\nabla \times F) \cdot \hat{n} \, \mathrmdpfhnhnS$$