發(fā)布時(shí)間:2025-09-29 06:13:14 瀏覽次數(shù):3
矩陣的秩計(jì)算公式:A=(aij)m×n
矩陣的秩是線性代數(shù)中的一個(gè)概念。在線性代數(shù)中,一個(gè)矩陣A的列秩是A的線性獨(dú)立的縱列的極大數(shù),通常表示為r(A),rk(A)或rank A。
在線性代數(shù)中,一個(gè)矩陣A的列秩是A的線性獨(dú)立的縱列的極大數(shù)目。類似地,行秩是A的線性無(wú)關(guān)的橫行的極大數(shù)目。即如果把矩陣看成一個(gè)個(gè)行向量或者列向量,秩就是這些行向量或者列向量的秩,也就是極大無(wú)關(guān)組中所含向量的個(gè)數(shù)。
擴(kuò)展資料:
矩陣的秩
定理:矩陣的行秩,列秩,秩都相等。
定理:初等變換不改變矩陣的秩。
定理:矩陣的乘積的秩Rab<=min{Ra,Rb};
引理:設(shè)矩陣A=(aij)sxn的列秩等于A的列數(shù)n,則A的列秩,秩都等于n。
當(dāng)r(A)<=n-2時(shí),最高階非零子式的階數(shù)<=n-2,任何n-1階子式均為零,而伴隨陣中的各元素就是n-1階子式再加上個(gè)正負(fù)號(hào),所以伴隨陣為0矩陣。
當(dāng)r(A)<=n-1時(shí),最高階非零子式的階數(shù)<=n-1,所以n-1階子式有可能不為零,所以伴隨陣有可能非零(等號(hào)成立時(shí)伴隨陣必為非零)。